Category Archives: Tool

How to use Citizen LED simulator

Datasheets are essential part when you compare how different light sources work in your solution. Usually it can be time taking and exhausting to glance at datasheet and find values you are looking for. This gets even harder if you have multiple LEDs or different LED packages, which would mean that you have look at multiple datasheets to get different values.

This is the reason why Citizen has created a Citizen LED simulator. The simulator is very easy to use and makes comparing different LED packages a lot easier. If you haven’t yet tried it or you don’t have the simulator, you can download it for free from our website.

Citizen LED simulator basic view

Citizen LED simulator basic view.

The steps

Follow these steps to use the simulator.

You can choose desired CCT and Ra and selection simulator shows packages and product codes of existing products.

You can choose desired CCT and Ra and selection simulator shows packages and product codes of existing products.

  1. Select the CCT and Ra

First you need to select desired CCT and Ra from condition input field.

You can choose desired CCT and Ra and the selection simulator shows packages and product codes of existing products.

  1. Choose whether you want to search based on the desired lumen amount or driving current

After you have selected color temperature and CRI value, you can choose between driving current (forward current in simulator) or desired luminous flux.

  1. Input the Tc-temperature

Then you can input Tc-temperature. If you have no idea how much Tc is or would be in your solution, values around 60 degrees are realistic to use as many light sources reach temperatures close to that while being used.

Example

In this example, I have chosen that I want my LED to be 4000K, Ra80 Min. And I want to see what options we have to get around 3000 lumens out from luminaire. Luminaire optics etc. will drain around 300-400 lumens in my solution. So I have determined that I need 3400 warm lumens from LED and estimated that Tc-temperature is 60 degrees.

"<yoastmark

I can see that I have ten different LED packages I can get the 3400 lumens from. In first column after product code you can see what current you should use to get these values. If you don’t have LED driver, in which you can choose output current, it is recommended to then select current value you have LED drivers available in. In this case, 700mA seems to be a good choice as many of the LED’s have driving current close to that.

So I change “forward current” instead of “luminous flux” from the condition input and insert 700mA.

LED packages which give you desired lumens with 700mA. We still have six options to choose from.

LED packages which give you desired lumens with 700mA. We still have six options to choose from.

This will give me a list of LEDs I can use with 700mA driver. And more importantly give me a good overview of LED packages that can give me my desired lumen amount. If you have problem that you can’t find driver with suitable current, you can contact me for help.

In this case, CLU028-1204 would suit my lumen need quite nicely and CLU048-1212, would probably be an overkill for this application. All the other options, might suit my solution although they give roughly 10% more lumens. Whether this is ok, depends really on my application and desired efficacy.

Other applications

Citizen LED simulator is also powerful tool to use when you want to see easily how much lumens you get when driving LED with different currents. Good example is that if you have LED driver which has different current options and flexible LED package, you can use only two components to realize many different lumen packages.

As an example I did this exercise with ELT 42W multicurrent LED-driver and Citizen CLU038-1205 LED package. This driver has option to select different driving currents with dipswitch. If we take Esko’s advice and look from driver datasheet, we can see that output voltage area is suitable from 500mA to 1000 mA.

Below you can see LED characteristics with different current. I have also added forward current column to make this table easier to read. Tc temperature is 60 degrees in all cases.

Table with CLU038-1205 4000K Ra80 LED from 500mA to 1000mA.

Table with CLU038-1205 4000K Ra80 LED from 500mA to 1000mA.

You can also use the LED simulator to estimate the amount of lumens lost due to your luminaire (optics etc.). If you measure LED Tc-point and input the driving current you use to simulator, you should have pretty good estimation that how much lumens you should get out from your luminaire.

If you find out that the loss is too big, the you can either change the LED to a different package or improve the optics of your luminaire.As you can see, you can use this driver & LED combo for a luminaire from ~2500lm to ~5000lm.

Please feel free to contact me if you have any questions.

You can download the latest simulator below.

Download COB Selection Simulator

 

How Lifetime Affects the Energy Savings of a Luminaire

Generally, when selecting LED luminaires, the attention is drawn to energy consumption. Efficacy, therefore, the power consumption, is the most important selection criterion. But do you pay attention to the lifetime of the luminaire? What happens if the better efficacy luminaire has shorter lifetime? This means that you may have to renew the luminaires much quicker. This adds expenses and eats off the savings from the electricity bill.

Lifetime of LED Light Source

Compared to traditional light sources, the lifetime of an LED light source is long. When a traditional incandescent bulb or a fluorescent tube runs out of its lifetime, it can’t be used anymore. It either won’t produce light or starts to flicker. LED only loses some of its brightness and is, at least in theory, eternal.

This is the reason why the lifetime of LED light sources is measured in a different fashion compared to the traditional. The lifetime of a traditional light source means literally lifetime. LED’s lifetime tells that at what point the amount of light drops below the desired value.

The terms for LED Lifetime:

  • L70, L80, LXX = How much of the original lumens are still available. For example L70 means that the light source still produces 70% of the original lumens. So if the light source produced 1000lm at the beginning, this has dropped to 700lm.
  • B50, B60, BXX = How many light sources are below the given lumen value. So e.g. B50 means that 50% of the light sources don’t produce the desired amount of lumens anymore.

Typically the lifetime is given as a combination of these two. For example L70B50: 60.000h means that after 60.000 operational hours 50% of the light sources still produces at least 70% of original lumens.

aLED Moduulin elinikäennuste

Lifetime estimate of aLED module

The lifetime can also be given using only the L-value. For example L70: 60.000h. Then the manufacturer doesn’t actually promise how many of the luminaires are still over 70% after 60.000h.

Taking Lifetime into Account When Selecting Luminaires

Let’s assume that you are lighting a space that has 1000 luminaires. For example a shop. You have narrowed your luminaire choices down to two: Option A and Option B. Currently the space has fluorescent lighting and more specifically 58W T8 luminaires, which produce roughly 4000 lumens each. Here are your options:

  • Option A
    • Luminous Flux :4000 lumens
    • Efficacy 150 lm/W
    • Power: 26.7 W
    • Lifetime L70B50: 50 000 hours
    • Price 120€/Luminaire
  • Option B
    • Luminous Flux :4000 lumens
    • Efficacy 130 lm/W
    • Power: 30.8 W
    • Lifetime L70B50: 90 000 hours
    • Price 120€/luminaire

It’s easy to choose option A. The power consumption is lower as the power is around 4 watts smaller. For example in your 1000 luminaire space this means 4kW and a significant savings in your electricity bill.

When you know the daily operational hours, you can calculate the annual electricity consumption and compare that to the old solution. For the sake of an example, let’s assume that your shop is open for 14 hours a day. When you add the time for cleaning etc., your daily operational hours are 16. At least in this example.

This way you get the following math:

  • Annual operational hours: 16h*365= 5840 h/year
  • Price of electricity: 0.1€/kWh
  • Traditional (58W Fluorescent)
    • Annual electricity consumption: 1000*58W*5840h=338720000Wh= 338720kWh
    • Electricity bill: 338720*0.1=33 872.00€
  • Option A:
    • Annual electricity consumption: 1000*26.7W*5840h=155928000Wh=155928kWh
    • Electricity bill: 155928*0.1= 15 592.80€
  • Option B
    • Annual electricity consumption: 1000*30.8W*5840h=179872000Wh=179872kWh
    • Electricity bill: 179872*0.1=17 987.20€

 

Both LED options drop the electricity bill down to half of the old solution, saving you a lot of money. Option A saves a little bit more, thanks to the better efficacy and lower power consumption.

In short term, option A would be the better solution. As it saves more per year. Option A saves annually around 2.4k€ more than Option B.

However, it is very rare that investment this size is made with a one, two or even five years scope. That’s why we should do the math for a longer period.

When we take the lifetime into account, the situation changes a little.

Let’s first calculate the lifetime in your application. When the daily operational hours are 16, the annual operational time is 5840h, as calculated above.

With this, we can transform the lifetime into a more understandable form:

  • Option A:
    • 50 000h/5840h=8.6 years
  • Option B:
    • 90 000h/5840h=15.4 years

So you would have to change the option A after 8 years while the option B can still light your space for 7 more years (15 in total).

When we look at the total savings caused by the luminaires, the numbers look like this:

Savings in electricity bill after luminaire change

Savings in electricity bill after luminaire change

Lifetime (a) Option A Option B
1  17 582.29 €  14 447.26 €
3  52 746.88 €  43 341.78 €
5  87 911.47 €  72 236.31 €
10  55 822.93 €  144 472.62 €
15  143 734.40 €  216 708.92 €
20  111 645.87 €  168 945.23 €

As you can see from the calculations and the chart above, the option A is better in the short term. But when you look for a long term savings, the option B’s longer lifetime kicks in before the investment reaches 10 years. You will have to replace the option A almost twice as often as option B.

So when you look at the investment in a long-term, the lifetime becomes very important.

When choosing luminaires, you should focus your attencion to both: efficacy and lifetime.  The more expensive the luminaire and the investment is, the more important the lifetime is.