Category Archives: Drivers

Environmentally Friendly LED Lighting Components

Generally, we can say that LEDs are environmentally friendly and recyclable. They have a long lifetime and low power consumption. They don’t contain hazardous substances, for example, mercury as compact fluorescent lamps do. In this blog post, I will present to you four environmentally friendly luminaire component choices.

LED That Don’t Need a Driver

Have you ever looked inside the driver? In the picture above, you can see the inside of the small-sized one. Drivers are made of many different materials and components. That’s why they are hard to recycle. The fewer components product has, the easier it is to recycle. For example, an aluminium heatsink is easy to recycle, because it contains mainly aluminium.

Drivers are the most fragile parts of the luminaire. In general, they can be the first component that breaks from the luminaire.

All traditional LEDs needs a driver to work. Except for AC COB that can be connected straight to the mains power. Because AC COB doesn’t need a driver, luminaire can be a lot smaller than before. This gives more flexibility for the design. At the same time, you can save in logistics and packing. You can read more about AC COB from our blog post.

Same Lumen Output with a Smaller Luminaire

Size is an important feature when designing environmentally friendly luminaires. When you use less material the luminaire gets smaller. And by downsizing the luminaire you can save in logistics and packing.

One great way to make the luminaire smaller is Citizen’s HC COB. It has higher efficacy and lower terminal resistance. This means that you can use a smaller heatsink. Therefor luminaire gets smaller the and you can still get the same lumen output. As a result, it makes HC COB more environmental choice. Read more about HC COB from here.

The Right Amount of Light and Less Light Pollution with Right Optics

When we talk about LEDs, often we come up with light pollution. We can say that almost all outdoor light that doesn’t have a purpose is light pollution. This means that light always needs a target.

When you replace the old light sources (for example HPS-lamps) with same powered LED, you get a lot more light. This is not environmentally friendly. You get a lot of unnecessary light and same time create light pollution.

When we design luminaires with the same lumen output than before, LED saves energy. This is because LED has less than 10% of the incandescent lamp’s power consumption. That’s why it is important to think about lumens, not power when replacing lamps with LEDs.

LEDs light comes from a very small area and from a flat surface, so it is easier to control than a light bulb. In street lights, most of the light pollution comes from light that goes up and away from the road. It is important to choose optics for the luminaire which are designed to minimize the light pollution.

Control the Luminaires with Sensors

There’s a lot of different sensors for different applications. The most familiar ones are the on/off-sensors. They automatically switch the light >on and off  by movement. They save energy, as the light can never be accidentally left on. This type of sensors is already generally used in public spaces.

Another great way to save energy is to use daylight sensors. They react to the light that comes from the outside. This way you can maximize the benefits of the sunlight. For example, during the day, you don’t need as much artificial light as in the evening. Read more about sensors from this blog post.

We have already made big steps in ecology, but still, we have a lot to do. We need to think about the packing of the luminaire and logistics. It’s important to minimize the amount of plastic used in packing. Also, we need to think alternatives for air freight. Small choices really matter.

Below you can download a presentation about Citizen’s AC COB. If you have anything to ask, you can always email to me: taru.matikainen@light.fi

Download Here

Microwave Sensors: How to Utilize Them in Lighting?

This blog post deals with microwave sensors. Especially how they are used with general lighting components to realize intelligent lighting systems. Some pictures enlighten the possibilities of microwave sensor technology better than hundreds of words.

Microwave Sensors

Microwave motion sensors operate in a different way that e.g. more commonly used passive infrared sensors. MW sensor sends out microwaves and analyzes the echo that comes back to the device.  If the movement changes the echo pattern the sensor will respond and switch the light on.

Microwave sensors have a consistent capability of detecting movement over all temperatures. PIR sensors’ detection sensitiveness might vary depending on the temperature. In addition, infrared sensors are vulnerable to dust and smoke and tend to have a shorter lifespan.

The lifetime of a microwave sensor is around 50.000 hours and our sensors are completely dust- and smoke-proof.

Example of a detection pattern when the sensor is mounted either on a wall or on the ceiling. Detection area can often be precisely set via dipswitches.

Microwave sensors can also detect movement through some non-metal materials such as glass and even thin walls. This gives more options for installing the sensor because it can be located out of sight or inside the luminaire.

Energy-saving In More Ways Than One

In addition to the traditional ON-OFF -control of a luminaire our sensors offer a wider selection of functions. You can also choose between 2-step and 3-step dimming. You can create larger networks of luminaires by utilizing RF communication between sensors to control several luminaires at once.

Some products have built-in daylight sensors, which enables you to fully take advantage of daylight and maintain sufficient light levels during dusk and dawn. This is called daylight harvesting.

Wikipedia states that several studies are implying to energy savings through daylight harvesting being around 20-60%. The greatest savings are achieved in rooms and areas where daylight has a significant impact on the lighting conditions through large windows for example.

In addition to energy savings, using these sensors also prolong the lifetime of your luminaires when luminaires are not on unless the light is actually needed.

Daylight sensor detects the level of ambient light and adjusts artificial light accordingly.

Endless Possibilities to Better Lighting Conditions

Correct lighting conditions make reading and writing more enjoyable, improves safety and can even have a positive effect on health. Where to use these sensors to get the best possible benefit out of them?

Some sensors are stand-alone models and can be connected to the LED driver. Other sensor products already include the driver. This gives you more options when you’re planning your lighting setup.

I have picked a few examples for you just to give you an idea of all the possibilities this kind of intelligent lighting control technology possesses.

Balcony: On/Off — Warehouse: 3-step dimming — Office: Daylight Harvesting

Restaurant: DALI LED Driver — Restroom: 3-step Dimming — Gas Station: Cluster Control & Daylight Harvesting

Conference Room: Cluster control — Underground Parking: 2-step Dimming — Stairwell: RF Wireless Control

As you can see, there are numerous function options and product combinations. To see a more detailed list of all the different types of sensor products in our range, take a look at our website.

To download a presentation on these sensor products, simply click the button below.

Download Here

How to Connect a Single LED Component into AC Network

I have two blog posts for you focused on how you connect COB LED components into the electrical network. I mean, when you have either a single COB LED or an LED module based on SMD LED components assembled on a PCB board.

Compared to traditional lighting, connecting LEDs to the electrical network is a whole new world. LEDs need direct current (DC) to light them, alternating current (AC) will not work. There are also AC modules available but those are not covered here.

In this post I will concentrate on connecting single COB LEDs. In case you are interested in connecting LED modules, I will write about that in my next post.

LED driver

You will need an LED driver, which is actually an AC/DC converter. It converts the AC voltage/current of the electrical network into the suitable DC voltage/current needed by the LED component. You will find the requirements of the LED from a datasheet provided by the manufacturer. If you need help in choosing a driver, you can read our guide.

Figure 1. Example of an AC/DC converter, LED driver. This one is from ELT with dipswitches, which means that you can choose the driving current.

Connecting COB LED into the AC network

In case of COB, you will have to create a closed electrical circuit so that the electrical current can flow through the LED component. A COB LED is basically a diode in its electrical nature: the current can flow only in a forward mode. This means that you must connect the positive (+) solder pad of the COB LED into the positive terminal of the LED driver. In the same way, you connect the negative (-) solder pad of the COB LED into the negative terminal of the LED driver. See the Figure 2 below.

 

This way, you create the closed electrical circuit that is needed to feed current through the LED so that it gives light. This closed electrical circuit formed by the LED driver and the COB LED is called the secondary side of the LED driver. LED driver feeds the power and current into the closed electrical circuit, and thus through COB LED, on the secondary side.

 

Figure 2. COB-AC Network

 

On the primary side, the LED driver gets electrical power from electrical network, AC network. The terminals of the LED driver on the primary side are called line and neutral. They are connected into the line and neutral connections of the AC network. If you have an LED driver with cables, they are usually blue (neutral) and brown (line). Some drivers also have a ground terminal, which is usually connected to the luminaire body with grounding wire. However, the closed electrical circuit is needed also on the primary side; between the network and the driver.

Usually, you will need to use some kind of terminal block to connect the driver into the electrical network on the primary side.

Picture of a terminal block

Figure 3. The example of terminal block to connect the LED driver into the electrical network.

Two options

Finally, as for physically connecting a COB LED into the LED driver, you have two ways to do it:

  1. solder the wires on the solder pads of the COB
  2. use solderless connectors.

In the first method, you manually solder the wire by using soldering iron with high temperature that melts the soldering material such as tin. After cooling, there is a joint between the wire and the COB solder pad. You need two wires, one for plus and one for minus solder pad.

In the second method, you use a solderless connector.

Figure 4. The solderless connector.

The solderless connector does the same effect as the soldered wire. You need the electrical connection also in this method, but you won’t need to solder the wire by melting tin. You just push the wire into the push-in terminals of the connector. Again, positive to positive and negative to negative terminal. They are marked on the connector. Basically these push-in terminals work with a combination of metal plates and springs that then make the connection to the solder pad of the COB LED.

The difference between these methods is, that unlike with soldered joints, in the solderless connector method the springs may loosen a bit over time and loss of contact may occur. Solderless connectors are generally thought to be more expensive than manual soldering.  

In my next post I will go through the steps for connecting LED modules.

Thank You for Everyone at Elfack 2017

I would like to thank everyone who we met at the Elfack Exhibition in Gothenburg, Sweden.

We had some good conversations with our existing customers as well as new people. This year we tested the color quality of Citizen’s LEDs at our stand. We got many answers through our questionnaire and found out that many visitors were excited about this new way of lighting.

If you took part in the test, you will receive the test results soon. We will also share these results with the public a little later.

We had a chance to show you our new products and the feedback we got from you was very encouraging.  I went through all the products in my last blog post, and if you wish to download more information about them, you are most welcome to do so here.

The products displayed at Elfack include:

  • aLED Engine
  • Citizen Gen 6
  • AC COB
  • Citizen Vivid Series
  • Furukawa Heatpipe
  • Merrytek sensors
  • Letaron & aLED Drivers

Our personnel will contact you as agreed, if they haven’t already. In case you have anything to ask, you can contact us directly.

 

What We Are Presenting in Elfack?

Elfack exhibition will be held in Gothenburg, Sweden from 9th to 12th of May. As it has been with previous exhibitions, we will be releasing new products and presenting the latest technology at our stand.

This year we will introduce and present the following products at our stand F04:70.

aLED Engine

aLED Engine

aLED Light Engine

We designed aLED Engine for applications that require a lot of light. aLED Engine consists of Furukawa heat pipe and Citizen COB LED.

In addition you can also choose a suitable optics and LED driver for the light engine from our selection. Suitable drivers are available as on/off, 1-10V dimming and DALI dimming.

aLED Engine is also compatible with Merrytek sensors, which allow you to control the lighting as you wish.

The 300W engine produces 36.000 lm at 4.000K and weighs only 3,6 kg with a driver installed.

aLED Engine will be at our stand in Elfack. There you can see the engine in action and try it with a daylight sensor.

Download More Information

Furukawa HYC Series

Furukawa HYC Series uses heat pipe technology to transfer the heat and makes heat sinks more efficient in cooling the LED.

how heat pipe works

How Heat Pipe Works

Heat Pipe’s thermal conductivity is almost 200 times better compared to copper. This allows the heat sink to be a lot smaller than we are used to.

Smaller heat sink reduces the weight of the luminaire dramatically.

The heat pipes effectively transfer heat from the heat source throughout the whole heat sink cooling the heat source faster than ever.

Heat Pipe vs. No Heat Pipe

Heat Pipe vs. No Heat Pipe

Furukawa heat pipes are compatible with Citizen COBs.

Furukawa heat pipes will be at our stand so you can see and try how light they are.

Read more about Furukawa heatpipe from here.

aLED & Letaron Drivers

aLED Driver

aLED Driver

aLED and Letaron offer a versatile range of both constant current and constant voltage drivers from low to high power (from 1 W up to 600 W).

Ouw own aLED drivers are best suited for high power applications. They are all available in IP68 and can be ordered as on/off, 1-10V dimming or DALI dimming.

Letaron drivers are best suited for low power applications, although they are available up to 52W.

Letaron offers a variety of designs to suit your needs including round, rectangular and slim models.

The Letaron low power drivers are also compatible with OLED light sources.

aLED and Letaron drivers will be on at our stand so you can see and try them yourself.

Merrytek

Merrytek sensors

Merrytek offers a wide range of different sensors. Some sensors come with LED driver and some are independent and can be connected to LED driver.

Merreytek has products particularly designed for eg. homes, schools, stairways, warehouses, offices, parking garages and outdoor use.

Merrytek’s intelligent lighting control products include:

  • Microwave motion and daylight sensors
  • Dimmable LED drivers
  • LED drivers with intergrated sensors

There will be Merrytek products on display at our stand. We will have an aLED engine wiht Merrytek’s daylight sensor on our stand, so you can see how it functions.

Citizen Gen 6, AC COB &Vivid Series

Citizen released Gen 6 COB and AC COB earlier this year with improvements compared to the previous versions.

Thermal Resistance

Thanks to better heat resistance, you can use much smaller heat sink. Gen 4 on the left, Gen 5 on the middle and Gen 6 on the right.

For the new Vivid series we’ve prepared a demo wall at Elfack for you to examine the possibilities of color quality control in LED lighting.

Seminar about color quality

We will organize a seminar about color quality on the first day of the exhibition.

Color comparison Vivid COBColor Comparison Regular COB 3000K Ra80 vs. Vivid Brilliant

The seminar will take place on Tuesday 9th of May.
Time: 16:00-19:00
Place: Hotel Gothia Towers, Tower 1, meeting room R22-23

The program:

  • Doors open at 16:00
  • Coffee
  • Welcome / Arrant Light Oy by Janne Mäkinen, Managing Director / Arrant-Light Oy
  • Color Quality with CITIZEN by Kosuke Tsuchiya, Field Application Engineer / Citizen Electronics Co.
  • Demonstration and open discussion
  • Refreshments and snacks
  • Close at 19:00

Please sign up for the seminar as soon as possible or latest by April 30th. We have limited seats and there is room for the first 20 persons only.

Sign Up for Our Seminar

Welcome to visit our stand F04.70 at Elfack.

All datasheets and other material will be available from our website soon. If you wish to download material about these new products before the exhibition. You can do that here.

Different Dimming Types for LED Lighting

You can use several different dimming options to dim LED Lighting. What are the possibilities and what dimming should you look from a LED driver? I’m going to answer these questions in this blog post by going through the different systems.

The goal is to give you the basic understanding of the dimming methods available at moment.

I am grouping the dimming methods in two main groups: analogue and digital.

When you want to control lighting, you have to know some basic issues of your lighting fixtures:

  • Are your fixtures dimmable? If yes, what is the dimming method which works together with your fixtures
  • If your fixtures are non-dimmable, then you can only have on/off – function.

Analogue

Analogue dimming covers all dimming systems that don’t transform the dimming signal into bits and controls the lighting in analogue manner.

Phase dimming

Phase dimming systems dim the lights by altering the supply voltage.

Leading & trailing edge dimming

Before LEDs, we used to dim halogen lamps with wall dimmers.  We can still use these kinds of dimmers.  But dimmer, driver and LED-module must be compatible with each other.

This type of control is accomplished without any need for an additional control wire. It involves connecting a dimmer in series between one of the mains wire and the equipment.

The dimmer cuts part of the mains voltage sinusoidal waveform to a greater or lesser extent in order to dim luminous flux even from 1% to 100%  (this value depends on dimmer and driver).

Depending on how the driver makes the mains voltage cut, it is possible to distinguish between two types of dimming:

Leading-edge dimming

Leading-edge dimming

Trailing edge dimming

Trailing edge dimming

Leading-edge dimming:

Dimming cut-off in the wave on its ascending side, from the beginning (phase cut-off at ignition). This is traditionally used in halogen lamps supplied through electromagnetic transformers.

Trailing-edge dimming:

Dimming by cut-off in the wave on its descending side, from the end cutting backwards (phase cut-off at switch off).  And this way of dimming causes less interferences than leading-edge dimming.

There are dimmers and equipment that support both types of dimming, and others that support only one type.

Leading & Trailing-edge dimming LC

Leading & Trailing-edge dimming LC

Leading-edge dimming L

Leading-edge dimming L

Trailing-edge dimming  C

Trailing-edge dimming  C

1-10V regulation

The 1-10V system enables dimming of the luminous flux from around 1…10% to 100%. This is done by sending an analogue signal to the equipment over an additional, two-wire control line. These control wires have positive and negative polarities respectively and that must be kept in mind when wiring up the system.

The analogue signal has a direct voltage value of 1V to 10V. 1V or short-circuiting the fixture’s input control gives the minimum light level. While 10V or leaving the input control circuit open gives out the maximum light level.

International standard, IEC 60929, defines the regulation curve. The regulation curve represents the relationship between the control line voltage and the luminous flux. It reflects a practically linear relationship in the range of 3V to 10V.

To get a response adapted to that of the human eye it is possible to use logarithmically controlled potentiometers.

Regulation curve by IEC 60929

Regulation curve by IEC 60929

These in light fixtures generate power control with 1-10V dimming.  Driver supplies a current to the controller through equipment control terminals. The controller current must be from 10µA to 2mA. The maximum control line current is obtained with a voltage of 1V and the minimum with a voltage of 10V.

This dimming system is unidirectional, i.e. the information flows in one direction, from the controller to the light fixture. The latter generates no feedback to control. This means that this system can’t be controlled by a software. Groups have to be created by wiring. This system can be integrated into building control systems.

The voltage drop in the control line wiring limits its length. Therefore, the maximum distance is limited by the number of control gears connected. The latter establishes the current per line and the cable diameter used.

Touch Control Push Button  (analogue but can be connected to digital systems)

Touch Control is a system that enables the simple and economic dimming of luminous flux. It uses the mains voltage as a control signal, applying it with a standard push button on a control line, without any need for specific controllers.
The Touch Control system enables you to carry out the basic functions of a regulation system with a power-free pushbutton. Depending on how long the button is pressed it is possible to switch the light on or off or dim it. Switching the light on or off is done by short, sharp pressing or “click”. If the button is pressed for a long time it is possible to dim the luminous flux between the maximum and minimum levels alternately.

Touch Dimming

Touch Dimming

This is a unidirectional interface, i.e. information flows in one direction. The equipment does not generate any type of feedback, so it can’t be controlled with a software. Groups have to be created by wiring. This system cannot be integrated into building control systems.

The length of the wiring and the number of equipment that can be connected, are theoretically unlimited. But in, asynchronism may occur during switching on and dimming, at distances longer than 25 meters, and with a larger number of fixtures connected.
Owing to its characteristics, the use of this dimming method is recommended for individual offices, small meeting rooms or bedrooms, landings and small spaces in general.

Digital

Digital dimming covers all dimming systems that transform the dimming signal into bits and controls the lighting in digital format.

DALI Regulation (digital)

As revealed by the meaning of its acronym, Digital Addressable Lighting Interface, DALI is a digital and addressable communication interface for lighting systems.

This is an international standard system in accordance with IEC 62386, which ensures compatibility and interchangeabil­ity between different manufacturers’ equipment marked with the following logo: DALI controller

DALI-logo

DALI-logo

It is a bi-directional dimming interface with a master-slave structure. The information flows from a controller, which operates as the master, to the control gears that only operate as slaves. The latter carries out the orders or responds to the information requests received.

Digital signals are transmitted over a bus or two-wire control wire. These control wires can be negatively and positively polarized, though the majority control gears are designed polarity free to make connection indifferent.

DALI Dimming

DALI Dimming

You don’t need especially shielded cables. It is possible to wire the power line and DALI bus together with a standard five-wire cable.

Unlike other systems, you don’t need to create wiring groups. Therefore all the pieces of fixtures are connected in parallel to the bus. Without bearing in mind the grouping of these, simply avoiding a closed ring or loop topology.

You don’t require mechanical relays to switch the lighting on or off, given that this is done orders sent along the control line. You don’t need are bus termination resistors either.

Consequently, the DALI interfaces offer wiring simplicity in addition to great flexibility when it comes to designing the lighting installation.

The maximum voltage drop along the control line must not exceed 2V with the maximum bus current of 250mA. Therefore, the maximum wiring distance allowed depends on the cable cross-section, but it must never exceed 300m in any case.

Configuring

After wiring, the DALI lighting system is configured with the software. You can create up to 16 different scenarios, addressing the equipment individually up to a maximum of 64 addresses.  This can be made with groups up to a maximum of 16, or simultaneously by means of a “broadcast” order. You can change the configuration at any time without any need for re-wiring.

The DALI system has a logarithmic regulation curve adjusted to human eye sensitivity, defined in the international standard, IEC 62386. The possible regulation range is set at from 0.1% to 100%. The driver manufacturer determines the minimum.

DALI Regulation Curve by IEC 62386

DALI Regulation Curve by IEC 62386

With the software, you can change the “fade rate”. “Fade rate”is the time needed to go from one light level to another(fade time) and the speed of the change.

The DALI system lies in the fringe between the complex and costly but powerful ones; control systems for buildings that offer total functionality and the most simple and econom­ic regulation systems, for example, the 1-10V one.

You can use this interface in simple applications indepen­dently, to control a luminaire or a small room. You can also use it in high-level applications such as being integrated by gateways into building smart control systems.

These are the most common systems you can use to dim LED. There are a lot of different dimming systems for different driver manufacturers. I can’t cover all of those in a single blog post. I will be writing a different post about wireless dimming options.

If you have anything you would like to know, you can always contact me.

Sources: ELT

How to Choose Constant Current LED Driver for your Application [Infographic]

The selection of Constant Current driver is not always that simple, Esko wrote a post about it some time ago. You can read that here.

Below you can find an infographic about the same topic. If you like it, feel free to share.

How To Choose Constant Current Driver [Infograpgh]

How To Choose Constant Current Driver [Infographic]

Here is a link to our Lightbuilder.

How to select modules + driver package

In this blog post we concentrate on how to design a LED lighting package as a whole. And what different aspects you will have to take into account when selecting a light source and a driver.
I decided to write this as a case example so that the post is more concrete.

Most of the luminaire projects starts with the need for certain amount of lumen needed out from the luminaire. Then there can also be requirements for the shape and size for the light source. Color temperature, color rendering and lifetime expectancy might also be critical, but those are topics for a blog posts of their own.

LED Modules

LED Module

Case example

So in this case you have specified that the luminaire needs to achieve:

  • Lumen output 2000lm
  • Color Temperature 4000K
  • Ra(min)80
  • Lifetime 50 000 hours (LM70 for the whole luminaire)
  • Efficacy >120lm/W
  • Linear light source. Max length of 120cm

With these specifications, the finding of the suitable solution shouldn’t be a problem.
There are, however few things that have to be taken into account when looking at the data of LED modules:

  1. Lumen output: Some of the lumens from the light source will be lost due to the optics. The amount of lost lumens is around 10%. Therefore, you should look for light sources that can give you at least 10% more lumens than you need.
  2. The shape of the light source. Do you have a minimum size for the light emitting surface? The luminaire in this example can be built with modules around 30cm in length, but that would probably not be perfect fit your luminaire. It would leave a lot of empty space and the light distribution wouldn’t be even.

With those two in mind, you would need a light source that gives you roughly 2200lm and fills the whole 120cm evenly. That could be reached with for example 4 modules with lumen output of 550lm and length of 30cm or with two modules with 1000lm output and length of 60cm.

Selection of LED Drivers

Selection of LED Drivers

The Driver

For the case study presented above, you still have one more step to go: choosing a LED driver. Esko already wrote a good guide on this, so I’m going to be brief.

Before we can start, you have to specify one thing: How many LED modules do you want to drive with one LED driver? Only one module or several modules in series?

In this example you would probably want to drive all the modules with just one driver. This might be the case with all luminaires. In more complex lighting systems you might use several drivers. To find a suitable driver you will need to:

  1. Check the current that you want to drive your light source(or sources) with.
  2. Check the voltage of your light source (or sources) and check that it fits the driver’s voltage range.

You should always leave some room for the voltage as there might be some variations in the diodes. Check that the driver has around 10% lower minimum voltage and 10% higher maximum voltage than your light source.

So there you have it in brief. If you need more help or would like to leave a comment, please leave a comment or contact me!

You can also use our free tool to build your luminaire.

How to Choose a Suitable Constant Voltage LED Driver for Your Application

We discussed earlier about general characteristics of LED drivers and how to choose a suitable constant current LED driver for your application.  Now, I’m going to tell you how to choose a right LED driver for your constant voltage application.  As told in the previous posts, LED drivers are divided into two different categories: constant current and constant voltage drivers. But that is not the only thing you have to take into account when selecting the driver. In this post, we are focusing in constant voltage drivers.

Constant voltage drivers are generally used when you need a stabile voltage fed to your LED. You can check the datasheet of your light source whether it needs constant current or constant voltage. If it says for example 12V or 24 V, then it needs constant voltage. And for example 350 mA or 700mA means that you need a constant current driver. Constant voltage driver (power supply) keeps voltage constant (e.g. as 12 V DC), but feeding current varies according to the load (the higher the load the bigger the current)

Datasheet of Constant Current and Constant Voltage LED Module. The circled value tells you does the module need constant current or constant voltage.

Datasheet of Constant Current and Constant Voltage LED Module. The circled value tells you does the module need constant current or constant voltage.

With these easy step-by-step instructions, you will find a suitable driver for your luminaire or signage application.

Step one: What voltage does your LED application need?

As already mentioned, you should find the voltage that your LED needs, from the datasheet or from the product itself.  For example if your LED needs a voltage of 12 V, you should find a driver with 12 V DC output voltage. If LED demands 24V, you should find a driver with 24 V DC output voltage. So that is pretty straightforward.

Step two: How powerful driver do you need?

The power consumption of the LED application can also be found from the datasheet or from the value label in the product.

Remember that if using multiple LED components, you have to find a driver that can feed all the LED components in your luminaire (in parallel connection).

 

GE Lightech 12W, 12V LED driver

GE Lightech 12W, 12V LED driver

Step three: What current range you need from the driver?

Again take a look at the datasheet and check the current of the LED application. If you have multiple LEDs, you should add the current together. Then you should find a driver with a current range that your LEDs fit into.  On the other hand if you have checked well the power you need then your driver will give enough current to get your LED application burn on the right level.

And in some constant voltage LED applications the current is not mentioned at all, only the voltage and the power. Then you can skip this part.

Step four: Do you need dimming? And what type of dimming?

A need for dimming is mainly dependent of the specification of your LED application. If you don’t need dimming, a normal on/off driver is enough for you. If you need dimming, there are many different types of dimming, but that is a topic for another post.  But e.g. in signage applications dimming is not normally required.

Step five: What are the physical dimensions the driver has to fit into?

You should also consider if there are some limitations for the physical dimensions of the driver. These will obviously have an impact on your driver selection. You will generally find the physical dimensions of the driver from its datasheet.

Step six: is the driver placed inside the LED application or outside (built in or independent version)?

If the driver is placed outside the LED application without any fixing the driver should be classified as an independent version. This means that the input and output cables of LED driver have strain reliefs to secure safe cable connections in case of any pulling force.

Step seven: What kind of environment the LED application is used in?

Where is your LED application designed to be used in? If it is designed for indoor use, then you probably won’t need to think about IP-classification so much. Of course if the luminaire is used in a room with a lot of dust or moisture, this has to be taken into account.

And for outdoor use check that the product is approved for min IP67 area.

GE Lightech 200 W 12V, IP67 driver

GE Lightech 200 W 12V, IP67 driver

IP20 class drivers it means that this driver can be used in indoor lighting applications but hardly stands harsh conditions in outdoor lighting unless the luminaire itself is waterproof thus protecting the driver.

But when designing a luminaire to outdoor use, then you should check that that the driver has good enough IP-class.

Usually IP67 drivers are heavier in weight, driver electronics is molded in many cases with plastic (e.g. potted) and the electrical throughputs of the wires both on primary voltage and the secondary voltage side are sealed with required protection against moisture.

Step eight: Approvals, is the driver suited for European or American standards?

Does the driver have any approvals? And are the approvals for Europe (ENEC), America (UL) or for another area? This can generally be found from the datasheet of the driver. In most cases it is the benefit of both the customer and supplier that drivers are certified for that area where they are used.

ROAL Strato CV 24V with ENEC and UL approvals

ROAL Strato CV 24V with ENEC and UL approvals

So there you have it. With these steps you should be able to find a suitable LED driver for your application. If you don’t, please leave a comment or contact me directly.

How to choose suitable Constant Current LED driver for your application

Selection of LED Drivers

Selection of LED Drivers

We discussed earlier about the general characteristics of LED drivers. In this post, I’m going to tell you how to choose a right LED driver for your application. LED drivers are divided into two different categories: constant current and constant voltage drivers. But that is not the only thing you have to take into account when selecting the driver. In this post, we are focusing only in constant current drivers.

Constant current drivers are generally used when you need stabile current fed to your LED. With constant current driver, it is easier to manage the right brightness. You can check the datasheet of your light source whether it needs constant current or constant voltage. If it says for example 350mA, then it needs constant current. 12V or 24V means that you need a constant voltage driver.

In this post, we’ll take a look at constant current drivers.

How to choose a constant current driver for your application?

With these step by step instructions, you will find a suitable driver for your luminaire.

Step one: What forward current does your LED need?

As already mentioned, you should find the forward current your LED needs, from the datasheet. For example if your LED needs a current of 350mA, you should try to find a driver with 350mA output current.

Step two: How powerful driver do you need

The power consumption of the LED can also be found from the datasheet or at least it can be calculated with the data in the datasheet. The power consumption can be calculated by multiplying typical driving current value by typical forward voltage value that both can be found in the LED data sheet. Sometimes you can even find the power consumption directly from the datasheet.

Remember that if using multiple LED components, you have to find a driver that can feed all the LED components in your luminaire.

ELT 10W, 500mA LED driver

ELT 10W, 500mA LED driver

Step three: What output voltage range you need from the driver
Again take a look at the datasheet and check the voltage of the LED. If you have multiple LEDs, you should add the voltages together. Then you should find a driver with a voltage range that your LEDs fit into.

Step four: Do you need dimming? And what type of dimming?

A need for dimming is mainly dependent of the specification of your luminaire. If you don’t need dimming, a normal on/off driver is enough for you. If you need dimming, there are many different types of dimming, but that is a topic for another post.

Step five: What are the physical dimensions the driver has to fit into?

You should also consider if there are some limitations for the physical dimensions of the driver. These will obviously have an impact on your driver selection. You will generally find the physical dimensions of the driver from its datasheet.

Step six: What kind of environment the luminaire is used in?

Where is your luminaire designed to be used in? If it is designed to indoor use, then you probably won’t need to think about IP-classification so much. Of course if the luminaire is used in a room with a lot of dust or moisture, this has to be taken into account.

ELT 60W, 700mA, IP20 driver

ELT 60W, 700mA, IP20 driver

IP20 class drivers it means that this driver can be used in indoor lighting applications but hardly stands harsh conditions in outdoor lighting unless the luminaire itself is waterproof thus protecting the driver.

But when designing a luminaire to outdoor use, then you should check that that the driver has good enough IP-class.

Usually IP67 drivers are heavier in weight, driver electronics is molded with plastic (e.g. potted) and the electrical throughputs of the wires both on primary voltage and the secondary voltage side are sealed with required protection against moisture.

ELT 10W, 350mA, IP67 driver

ELT 10W, 350mA, IP67 driver

Step seven: Approvals, is the driver suited for European or American standards?

Does the driver have any approvals? And are the approvals for Europe (ENEC) or America (UL). This can generally be found from the datasheet of the driver.

So there you have it. With these steps you should be able to find a suitable LED driver for your application. If you don’t, please leave a comment or contact me directly.

You can also use our Light Builder to select a driver.